GEOCHEMICAL and GEOLOGICAL
ASSESSMENT REPORT
on the
KINSKUCH PROPERTY

Tenure No’s: 385586, 385587, 385591, 385592, 385602, 385603, 385604, 1027569, 1027728, 1031466, 1032010, 1035460, 1035461, 1035598, 1035604, 1035609, 1039727, 1041678, 1041731, and 1041734

Stewart Area
Skeena Mining Division

NTS: 103P11
Latitude: 55º 38’ 45.3” N; Longitude: 129º 21’ 33.0” W
UTM (NAD83 – Zone 9): 477395E, 6166730N

Owner/Operator: OK2 Minerals Ltd

Authors: Dustin Perry, BSc. and Gayle Febbo, MSc.

December 14th, 2017
Table of Contents

1.0 Summary...4
2.0 Introduction...5
 2.1 Property..5
 2.2 Accessibility...5
 2.3 Physiography and Climate..5
 2.4 Local Resources and Infrastructure...5

3.0 History..7

4.0 Geology...9
 4.1 Regional Geology..9
 4.2 Property Geology...10

5.0 2017 Geochemical Program...16
 5.1 General...16
 5.2 Sampling Procedures and Analytical Methodology..16
 5.3 Results...16

6.0 Conclusions...18

7.0 Recommendations..18

8.0 References..19
Appendices

Appendix A: Statement of Qualifications

Appendix B: Statement of Expenditures

Appendix C: Tenure Information

Appendix D: Sample Descriptions

Appendix E: Analytical Reports

Appendix F: Maps

Appendix G: ZTEM Geophysical Report

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Field photographs of Triassic and Jurassic sedimentary strata</td>
</tr>
<tr>
<td>2</td>
<td>Field photograph of Lower Hazelton Group conglomerate</td>
</tr>
<tr>
<td>3</td>
<td>Field photograph of Lower Hazelton Group volcanic rocks</td>
</tr>
<tr>
<td>4</td>
<td>Kinskuch plutonic rock phases of intrusion</td>
</tr>
<tr>
<td>5</td>
<td>Equal area stereographic projections of poles veins</td>
</tr>
<tr>
<td>6</td>
<td>Field photograph of Bonnie Breccia zone</td>
</tr>
<tr>
<td>7</td>
<td>Field photographs of hydrothermal veins</td>
</tr>
<tr>
<td>8</td>
<td>Field photograph of reverse fault</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Map</th>
<th>Description</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General Location</td>
<td>1:1,000,000</td>
</tr>
<tr>
<td>2</td>
<td>Tenure Information</td>
<td>1:75,000</td>
</tr>
<tr>
<td>3</td>
<td>Regional Geology</td>
<td>Not to scale</td>
</tr>
<tr>
<td>4</td>
<td>Property Geology</td>
<td>1:10,000</td>
</tr>
<tr>
<td>5</td>
<td>Alteration</td>
<td>1:10,000</td>
</tr>
<tr>
<td>6</td>
<td>Sample Locations</td>
<td>1:10,000</td>
</tr>
<tr>
<td>7</td>
<td>Geochemistry</td>
<td>1:10,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Notable rock samples from sheeted qtz stockwork zone</td>
</tr>
<tr>
<td>2</td>
<td>Notable rock samples from Big Bulk</td>
</tr>
</tbody>
</table>
1.0 SUMMARY

The Kinskuch Property consists of 18 mineral claims covering 4,322 Ha in in northwestern British Columbia, approximately 50km southeast of Stewart and approximately 20km north-northeast of the village of Alice Arm. It lies within the Skeena Mining Division and is centered on 55° 38’ 45.3” N Latitude, 129° 21’ 33.0” W Longitude. Access to the property during the 2017 field season was by helicopter from the Kinskuch FSR near the outlet from Kinskuch Lake.

The property is located in an area of good infrastructure and resources. The town of Stewart has a helicopter base and access to many basic services. The cities of Terrace and Smithers are 310 km and 330 km away respectively, and can provide any resources required. The small community of Alice Arm and the abandoned town of Kitsault lie approximately 20 km south-southwest of the property. Kitsault is a 170 km drive from Terrace and is serviced with electricity through the BC Hydro grid.

The area has seen an extended exploration history dating back to approximately 1910. It includes the Dolly Varden, North Star, and Torbit past-producing mines, which operated in the Kitsault River valley at intermittent times from 1919 to 1959, and produced silver, lead, zinc, copper, and gold.

In 2001 and 2002 Teck Cominco conducted extensive surface exploration on the Big Bulk property, and in 2003, Canadian Empire Corp. drilled 11 diamond holes on the property. In 2008, Durango Capital Corp. drilled a number of diamond holes on the Big Bulk claim held by Dolly Varden Silver Corporation, and in 2009, Anglo Gold followed with another three ~700m deep diamond holes targeting chargeability anomalies detected in an IP survey carried out by Durango Capital Corp. in 2008.

LTC Holdings Inc. purchased the Big Bulk property in 2015 from Teck Cominco. Eight high quality orthophotographs and digital elevation models were produced using a DJI Phantom III quadcopter UAV (drone). 50 channel samples were also collected in areas which yielded high levels of gold or copper in historical rock sampling surveys.

The Big Bulk property in addition to the Golden Mickey and VMS claims were optioned by OK2 Minerals in 2016 and renamed the Kinskuch Property. 2016 work included preliminary geochemical sampling, mapping, and prospecting.

The Kinskuch property lies on the east limb of a large scale antiform gently plunging to the northwest known as the Mt. McGuire anticline. The part of the McGuire anticline covered by the property is a thick sequence of lower Jurassic Hazelton volcanic rocks with lesser sediments and subvolcanic intrusives.

This report summarizes the geochemical and geological program carried out from June to August of 2017. Orevista Exploration Consultants Ltd. was contracted to carry out a geological and geochemical program consisting of rock sampling, prospecting, and geologic mapping. Geotech was contracted by Helca Mining, Dolly Varden Silver, and OK2 Minerals to carry out a ZTEM airborne geophysical survey over their respective properties.

Work was conducted on Tenure No’s: 385586, 385587, 385591, 385592, 385602, 385603, 385604, 1027569, 1027728, 1031466, 1032010, 1035460, 1035461, 1035598, 1035604, 1035609, 1039727, 1041678, 1041731, and 1041734 and totalled $293,882.37 (Appendix B and C).
2.0 INTRODUCTION

2.1 Property

The Kinskuch Property consists of 18 contiguous mineral claims (Appendix C) which cover 4,322 Ha in northwestern British Columbia (Maps 1 and 2). The property is located within NTS map sheet 103P/11 approximately 50km southeast of Stewart and approximately 20km north-northeast of the village of Alice Arm. It lies within the Skeena Mining Division and is centered on 55° 38' 45.3" N Latitude, 129° 21' 33.0" W Longitude.

The property is located on crown land owned by the Province of British Columbia and there is no foreseeable reason why surface access to the property will be revoked. The author is not aware of any known environmental liabilities or other significant factors that might affect mineral titles or the ability to perform work.

2.2 Accessibility

Access to the property during the 2017 field season was by helicopter the Kinskuch FSR located approximately 17km from the camp location. The weather in the Stewart-Alice Arm area is highly variable and caused delays on multiple occasions.

2.3 Physiography and Climate

The property lies in the Skeena coastal physiographic unit, which is characterized by rugged topography. Elevations on the property range from the Kinskuch Lake elevation of approximately 1100 meters to 2306 meters on Lavender Peak. Valleys are steep sided and vary from U to V-shaped. Many areas of the property are covered by glaciers, although their retreat is rapid based on photo analysis from previous years. Recently exposed areas are very rugged, have sparse alpine vegetation if any, and no trees. Vegetation in areas distal to the glaciers consists of spruce and willow.

The climate is coastal, with abundant rain from June to October. Temperatures can fluctuate strongly even during the summer, and access to the property can be hampered by low cloud and poor weather. Extraordinary accumulations of snow throughout the winter months can exceed 8 meters. Surface work such as geological, geochemical and geophysical surveys is limited to snow free months that range from approximately mid-June to early-October.
2.4 Local Resources and Infrastructure

The property is situated approximately 50 km southeast of Stewart, population approximately 450, where basic services (accommodation, groceries, fuel, propane, some heavy equipment) and some labour are available. From Stewart, the cities of Terrace and Smithers are 310 km and 330 km away respectively, and can provide any resources required. The small community of Alice Arm and the abandoned town of Kitsault lie approximately 20 km south-southwest of the property. Kitsault is a 170 km drive from Terrace and is serviced with electricity through the BC Hydro grid. There is no road access to Alice Arm.

3.0 HISTORY

The area has seen an extended exploration history dating back to approximately 1910\(^1\). Earliest recorded information dates back to provincial government Annual Reports from 1915. The primary area of exploration has been centered in the Kitsault River area with lesser exploration in the Lahte Creek-Illiance River valley, the Dak River area and the area surrounding Kinskuch Lake.

The Dolly Varden, North Star and Torbit mines are past-producing mines, which operated in the Kitsault River valley at intermittent times from 1919 to 1959, and produced silver, lead, zinc, copper and gold. These deposits were originally considered to be veins hosted along a tensional fault system but were later studied by Devlin and Godwin (1987) and interpreted to be an exhalative, stratiform deposit. The Kitsault River valley as well as the surrounding area saw extensive exploration for a number of metals during the early part of the 20th century.

Copper and gold mineralization was extensively explored in an area historically known as the Copper Belt, located west of the Kitsault River near its headwaters. A number of showings, such as the Homestake Ridge (now the Homestake Deposit), Vanguard Copper, Red Point, and Vanguard Gold are located in this area. Numerous other showings such as the Sault, Ace/Galena, and Wolf are all located in the Kitsault River/Kitsault Lake area.

\[\text{\footnotesize ^{1} History up to 2009 has been summarised by Smyth (2016).}\]
The Red Point prospect, also within the Copper Belt, was discovered during the 1910’s and was subsequently explored by adits on the higher-grade copper prospects. The prospect was acquired by Dolly Varden Minerals Incorporated and was explored by geological, geochemical, and geophysical methods and was later trenched and drilled.

Sporadic exploration throughout the Kitsault River valley has been conducted over many of the known showings. Of note are the silver-lead-zinc deposits of the Dolly Varden, Wolf, Torbit, and Northstar deposits, which were explored during the period 1964 to 1990. These deposits have been explored by geophysical, geological, and geochemical methods and in some cases have been trenched and/or drilled.

South of Kitsault Lake, the Sault property was discovered in 1966 by Cominco Ltd. and was explored intermittently until 1990. The property has been described by Tupper and McCartney (1990), as referenced from company reports by MacRobbie, as mineralized carbonate deposits restricted to syn-sedimentary graben which acted as traps for local accumulation of carbonate, sulphate, and minor sulphide mineralization. Cominco (1984) and Oliver Gold Corporation and joint venture partners Aber Resources Limited and Tanqueray Resources Limited (1989) drilled the property and conducted geological, geochemical, and geophysical work.

The area of the Illiance River and Lahte Creek saw numerous discoveries of relatively small veins commonly hosted within shear structures with high silver values associated with lead and zinc mineralization. The area first received attention during the period from the early 1910’s through the 1920’s. Exploration activity increased again during the 1950’s – 1960’s, during which time numerous companies were active in the area. Hudson Bay Exploration and Development Co. explored this same area during 1980-1981 to explore the rhyolite hosted lead-silver float and occurrences, which were discovered originally in 1916 and were re-discovered in 1980. The occurrence is known as the Left Over showing. Exploration to the northwest of the Illiance River and southwest of Lahte Creek near Mt. McGuire was focused on a porphyry molybdenum deposit know as the Ajax.

Northwest of Lahte Creek in the area south and east of Kinskuch Lake copper showings were first explored in the 1930’s. The area was sampled by Britannia Mines in 1939 and was drilled in 1955-1956 by Northwestern Explorations Limited, establishing a small reserve of a few million tones of 0.4% copper on the Bonnie zone. Forest Kerr Mines Ltd. conducted geological, geophysical, and diamond drilling during 1965. Cyprus Exploration Corp. explored the property geological, geochemical, and diamond drilling during 1966. In 1970 Ken Addison Mines ltd. conducted geophysical surveys and a limited diamond drill program. The property was restaked in 1979 as the Big Bulk and was mapped and sampled by Prism Resources in 1980. Procan Resources drilled five diamond drill holes in 1982. The property was again looked at in 1990-1991 by the joint venture partnership of Oliver Fold Corporation, Abner Resources Ltd., and Tanqueray Resources Ltd. The joint venture conducted extensive geological mapping, geochemical sampling, trenching, and prospecting. During 1989 the joint venture also carried out a regional survey. The 1991 program focused on the Big Bulk area and was primarily a blast trench, geological mapping, and prospecting program. The author’s results and conclusions of the 1990-1991 programs suggest porphyry copper-gold deposit potential as evidenced by the alteration assemblage of the Big Bulk area.
In 2001 (Evans, 2002) and 2002 (Evans, 2003) Teck Cominco conducted extensive surface exploration on the Big Bulk property, and in 2003, Canadian Empire Exploration Corp. drilled 11 diamond drill holes on the property (Thurston, 2003). In 2008, Durango Capital Corp. drilled a number of diamond holes on the Big Bulk claim held by Dolly Varden (Smyth, 2009), and in 2009, Anglogold followed with another three 700m deep diamond drill holes targeting chargeability anomalies detected in an IP survey carried out by Durango (Smyth, 2010).

LTC Holdings Inc. purchased the Big Bulk property in 2015 from Teck Cominco. Eight high quality orthophotographs and digital elevation models were produced using a DJI Phantom III quadcopter UAV (drone). 50 channel samples were also collected in areas which yielded high levels of gold or copper in historical rock sampling surveys (Smyth 2016).

The property in addition to the VMS and Golden Mickey claims were optioned by OK2 Minerals in 2016 and renamed the Kinskuch Property. The 2016 exploration program was designed to familiarize the current operators with the property in addition to mapping and prospecting new exposure due to glacial retreat.

4.0 GEOLOGY

4.1 Regional Geology

The Kinskuch property lies on the east limb of a large scale antiform gently plunging to the northwest known as the Mt. McGuire anticline. Situated near the western margin of the Bowser basin, the property is primarily located over lower to middle Jurassic volcanics and sediments deposited in a marine environment, as well as sub-volcanic intrusions. This sequence is collectively known as the Hazelton Group which consists of a well-mineralized sequence formed in an island arc environment. This sequence in the Kitsault area is bounded by Tertiary intrusives to the west and the marine-lacustrine Bowser to the east. The Hazelton Group in the Kitsault area has undergone west to east compression, which has resulted in asymmetric folding and thrusting, and produced only low grade greenschist metamorphism of the rocks (Evans, 2003).

Coller (2008) provided evidence of rift inversion structures associated with the Mt. McGuire anticline, a possible alternative to the above-mentioned “asymmetric folding” interpretation of the larger structures in the area. If Coller’s interpretation is correct, it is another important aspect of similarity between the Mt. McGuire anticline and the economically important McTagg anticline (Nelson and Kyba, 2014) to the north near KSM.

The Kitsault area is the southern limit of a continuous belt of the Hazelton Group which hosts the highly profitable Eskay Creek VMS deposit. The Eskay deposit occurs in sediments overlying felsic volcanics at the top of the Hazelton volcanics.

Another system in the same stratigraphy that remains undeveloped is the Red Mountain deposit. The system is related to 190mya Goldslide intrusions which are also present throughout the area including intrusions along the southern shore of Kinskuch Lake.
The Dolly Varden camp owned by New Dolly Varden Minerals Inc. is located in the Kitsault River valley approximately 20 km north of Alice Arm. Previous production from the Dolly Varden, North Star, and Torbrit mines totaled 19.9 million oz Ag and 11 million lbs Pb. Recent work (Delvin, 1987 and others) suggests this system is a possible VMS system.

Recent research (Kyba, 2014) has highlighted the possible role of the Stuhini/Hazelton unconformity in localizing mineral deposits. The proximity of that contact to the Kinskuch property is illustrated in Map #3.
4.2 Property Geology

Introduction

In spring of 2017 a geological compilation map was generated from numerous other mappers in the area including Charlie Greig and Graeme Evans. In July and August, a focused remapping program was undertaken to re-interpret the alteration and plutonism. The area of remapping extended from approximately 475000mE to 478500mE and from 6166000mN to 6168000mN. Lithology descriptions here refer to remapped rocks and units such as Stikine assemblage chert and Upper Hazelton sedimentary rocks and felsic volcanic rocks are not included as part of this study. Refer to Maps 4 and 5 in Appendix F for geological and alteration maps of the property.

UTrSb: Upper Triassic Stuhini Group basalt

Basalt is the deepest strata mapped in this study and it outcrops in the western map area on the eastern hinge of the McGuire anticline and in the hinge area of two northwesterly trending antiforms west of Kinskuch Lake. The contacts of the basalt near Golden Mickey claims are northerly trending and the unit lacks bedding within a steeply east-dipping succession. Volcaniclastic basalt beds east of Golden Mickey trend variably easterly and northerly reflecting local fold axes trends. Near Kinskuch lake, in the hinge of a synform, orange weathered clast-supported, polymictic basalt tuff breccia contains clasts up to 10 cm that range from aphanitic to faintly plagioclase-phyric and augite-phyric in a feldspar crystal tuff (Fig. 1A). Near Golden Mickey, in the eastern flank of the McGuire anticline, deep grey-green, quartz amygdaloidal, fine-grained, equant, augite- and olivine- phyrnic basalt flows are conformable with sedimentary rocks up section. This mafic unit grades stratigraphically upwards into hornblende porphyry and clast clast-bearing conglomerate of the lower Hazelton that outcrops in synformal areas west of Kinskuch Lake.
Figure 1. Field photographs of Triassic and Jurassic sedimentary strata. A: Characteristic equant, black augite phenocrysts in boulder clast of a basalt tuff breccia; 475365 E, 6170035 N (photo ID 3127). B: Orange-weathered sandstone with rhythmic bedded black siltstone dip steeply and young to the east (direction of pencil) and chert pebble conglomerate lenses defining flow channels; 474899 E, 6166567 N (photo ID 3089). C: Flame textures in silt and orange weathered sandstone indicate younging to the east, in the direction the pencil point; 475578 E, 6165826 N (photo ID 3702). D: Grey-black millimeter-centimeter scale upright beds of black silt and grey feldspathic sand < 1 mm diameter grains with subordinate quartz grains dip moderately east; graded beds and slumping textures indicate younging to the east, photo view to the northeast; 476921 E, 6170580 N (photo ID 3044).

UTrSsed: Upper Triassic Stuhini Group orange-weathering siltstone-sandstone

Stuhini Group sandstone-siltstone outcrops to the south and southwest of the Kinskuch plutonic rocks at relatively high elevations. Beds generally have northerly strikes, steep dips and young to the east with both upright and overturned beds. Rocks are characterized by orange-weathered sandstone layers interbedded
with rhythmic bedded black silt. Abundant eastward-younging indications are observed including normal grading, scours and flame structures (Fig. 1B). Interbeds of heterolithic, thin lenses of angular black chert pebble conglomerate are cut by diorite near the southwestern corner of Kinskuch Lake. The sedimentary rocks grade upwards into conformable successions of similar rhythmic bedded sand and silt with increased conglomeritic components. This in turn grades conformably into hornblende-phyric andesite clast-bearing, chert pebble conglomerate that is designated Lower Hazelton. The appearance of andesite volcanism is diagnostic of the Lower Jurassic timing and warrants a Hazelton Group designation (pers. comm. B.I. van Straaten). Beds are cut at a high angle by Phase 1 diorite.

UTrS-LJHsed: Upper Triassic-Lower Jurassic transitional sequence

Outcropping on both sides of Kinskuch lake and up section of both the rhythmic orange-weathered siltstone-sandstone and the volcaniclastic basalt is a transitional sequence of sedimentary rocks. The sedimentary rocks are conformable with underlying and overlying strata, have northerly to northwesterly strikes and steep to moderate dips that young eastward. The beds are distinctly grey-black, have rhythmic silt-sand interbeds (Fig. 1D), and abundant eastward-younging evidence in scours, normal graded beds and flame textures. The strata is not easily designated Triassic or Jurassic and may reflect a conformable, gradational transition from Stuhini to Hazelton Group deposition.

LJrHss and LJrHcg: Lower Jurassic sandstone and conglomerate

West of Kinskuch lake are broad outcrops of Lower Jurassic sandstone and conglomerate that reflect repeated stratigraphy in several anticline-syncline sets. Bedding strikes northwesterly to northeasterly, dips easterly (east limbs) and westerly (west limbs) with predominantly eastward-younging. Sandstone, pebbly sandstone and clast-supported conglomerate units are made up of angular to subrounded black mudstone clasts, white and black chert clasts, limestone clasts, hornblende-phyric volcanic clasts and rare augite-phyric volcanic clasts near the base of the sequence (Fig. 2). The matrix to the siliciclastic rocks is composed of feldspar grains, fine lithic fragments of comparable composition to the clasts and can effervesce in some of the matrix. Outcrops of >10 m across chert within the conglomerate-sandstone are surrounded by angular, clast-supported, monomictic, chert sedimentary breccia in a matrix of sandstone that grades into subrounded heterolithic, chert pebble conglomerate. These outcrops are interpreted to be large blocks of the underlying Triassic Stuhini Group chert that deposited into the basin during Jurassic sedimentation. These siliciclastic rocks of the Lower Hazelton Group appear to conformably overly basalt flows and breccias and are cut in some areas by Early Jurassic hornblende-diorite. The augite-phyric basalt clasts and the chert clasts are interpreted to be sourced from Triassic Stuhini Group and older rocks and the hornblende-phyric andesite and limestone clasts are interpreted to be sourced from the Lower Jurassic Hazelton Group rocks.
The majority of the Lower Jurassic Hazelton Group andesite rocks outcrop at high elevations south, east and northeast of Kinskuch lake. Narrower horizons of andesite flow and lapilli tuff outcrop west and north of Kinskuch lake overlying Lower Jurassic sandstone and conglomerate. Bedding in the unit is defined by narrow tuff and mudstone lenses within the coarser volcanic rocks and eutaxitic foliation such as fiamme clast alignment. Beds generally strike north to northeast and dip moderately to the east, generally shallower than the underlying sedimentary strata. Clasts are monolithic hornblende-feldspar porphyritic volcanic and can be welded, pumicious clasts in a matrix of angular hornblende and feldspar crystal tuff (Fig. 3). The deposits generally contain >50% clasts that are angular and blocky-equant in shape. Most of these deposits contain clasts in excess of 1 m that are interpreted to be block and ash flows due to the blocky shape and large size of the clasts and the tuffaceous matrix. The diorite plutonic phases and the andesite strata are mutually cross-cutting and appear to indicate that volcanism preceded and post-dated the phases of intrusion described here. For example, thin deposits of andesite lapilli tuff are cut by Phase 1 diorite west of Kinskuch lake. At higher elevations south and east of the lake, the tuff breccia cuts Phase 1 and 2 but is cut by Phase 3 in other areas locally. Volcanic deposits up stratigraphy (east) of the Bonnie Breccia contain hydrothermal
lithic fragments interpreted to indicate eruption and deposition in the latest Phase 2 stage. The lower levels of andesite volcanism are overprinted by QSP alteration events, whereas upper levels are only overprinted by epithermal silica veins and clay alteration that is low in pyrite. Biotite phenocrysts in unaltered, higher levels of the andesite tuff breccia can be observed, this may reflect volcanism related to the Phase 4 biotite monzonite intrusions also. Hence, volcanism precedes Phase 1 plutonism and is clearly identified at the latest stages of Phase 2, Phase 3 and Phase 4.

Figure 3. Field photograph of characteristic Lower Jurassic Hazelton Group volcanic rocks. Clast-supported andesite tuff breccia with angular, equant hornblende-plagioclase porphyritic clasts in tuffaceous matrix, 476844 E, 6165825 N (photo ID 3668).
Figure 4. Kinskuch plutonic rock phases of intrusion. A: Phase 1 diorite is green, medium-grained, crowded, magnetite-hornblende-diorite porphyry overprinted by pervasive propylitic calcite-epidote-chlorite-pyrite-chalcopyrite alteration. 475063 E, 6166399 N (photo ID 3082). B: Phase 2 symineral hornblende diorite contains quartz-chalcopyrite vein xenoliths that are cut by quartz-chalcopyrite sheeted quartz veins and pervasive chlorite-quartz-magnetite alteration; 476094 E, 6167052 N (photo ID 3271). C: Phase 3 green, medium-grained, crowded, hornblende diorite porphyry is overprinted by quartz-sericite-pyrite-chlorite (QSPC) alteration; 477715 E, 6166876 N (photo ID 3455). D: Xenolith clast of sheeted quartz veins (SVQ, Phase 2) contained within Phase 3 hornblende diorite porphyry overprinted by quartz-chlorite-pyrite alteration; 477926 E, 6166916 N (photo ID 3346). E: Phase 4 monzonite is green, medium-grained, with 1-5 mm pink euhedral K-feldspar and green hornblende phenocrysts in equigranular hornblende-quartz-K-feldspar-plagioclase groundmass; 476441 E, 6166597 N (photo ID 3692). F: Flowbanded contact zone of Phase 4 monzonite with internally stockworked Phase 3 hornblende diorite xenolith clasts, 476168 E, 6166722 N, (photo ID 3113).

EJrKdrt P1: Early Jurassic Kinskuch diorite porphyry Phase 1

The earliest diorite plutonism in the Kinskuch area defines a body that measures nearly 6 km in the north-south axis and over 4 km in the east-west axis. The intrusion outcrops on the southwest, south, and southeast side of Kinskuch lake and can be identified on numerous islands in the southern half of the lake. The intrusion can be flow banded at contact zones and trachytic textures can be observed in narrower intercepts of the intrusion. The porphyry is crowded, medium-grained, hornblende-plagioclase-phyric diorite porphyry (Fig. 4A). Plagioclase ranges in abundance from 15-45% and is typically 1-6 mm in length; hornblende ranges in abundance from 5-25% and is typically 1-4 mm in length within an aphanitic groundmass. In contact zones, xenoliths of sedimentary strata are common. The hornblende diorite cuts Stuhini Group basalt and sedimentary strata as well as Basal Hazelton sandstone and conglomerate. In contact zones the diorite is overprinted by propylitic and endoskarn assemblages. The Phase 1 diorite is overprinted by all porphyry alteration assemblages including propylitic, albitic and QSP. The intrusion is unconformably in contact with andesite volcanic rocks of the Lower Hazelton at high elevations and it is also cut by Phase 2, 3, and 4 plutons in its core.

EJrKdrt P2 and sqz: Early Jurassic Kinskuch diorite porphyry Phase 2

The second phase of diorite plutonism (Phase 2) extends ~2 km east-west and 0.5 km north-south inboard of Phase 1 and outcrops as isolated enclaves. The intrusion is of comparable composition and texture to Phase 1 and is distinguished by: 1) the presence of Phase 1 diorite porphyry intrusion breccia clasts, 2) clasts and contact zones with albite altered Phase 1 diorite, 3) synmineral timing with respect to sheeted quartz veins and Stage 1 copper mineralization. In high volume quartz-chalcopyrite stockwork zones, early dismemberment, disarticulation and quartz vein xenoliths can be observed in this phase of plutonism that are in turn cut by in-tact quartz-chalcopyrite sheeted to stockwork veins (Fig. 4B). The cross-cutting relationship with Phase 1 and the synmineral timing warrant a unique phase. The intrusion is cut on all sides by Phase 3 plutonism, is inferred to be cut by Phase 4 plutonism and is overprinted by QSP alteration.

The sheeted quartz vein (SQV) zones are emplaced in and contemporaneous with Phase 2 diorite defining a discontinuous east-west surface trace of ~ 2 km and a discontinuous width of 500 m. The SQV body is defined by >15% by volume quartz-chalcopyrite veins, high chalcopyrite:pyrite ratios and predominantly subparallel vein geometries that strike west to southwest and dip steeply northwest (Fig. 5B). Vein textures in all examples include centerline sulphide mineralization in veins as well as intense disseminated chalcopyrite in the diorite.
Figure 5. Equal area stereographic projections of poles veins for: A) all porphyry-related veins excluding the sheeted quartz veins, B) Sheeted quartz veins, and C) Stage 3 veins.
Figure 6. Field photograph of Bonnie Breccia zone. A: Root expression in Bonnie zone contains angular diorite clasts with K-feldspar-albite-epidote altered rims and matrix healed with chalcopyrite-epidote-chlorite; 477074 E, 6167141 N (photo ID 3341). B: Typical breccia texture in East Bonnie zone contains heterogeneous hydrothermal altered clasts of diorite porphyry (e.g. silica-, albite-, chlorite-altered) and sulphide clasts in a groundmass of diorite porphyry; 477899 E, 6166887 N (photo ID 3349).

EJrKbx: Early Jurassic Kinskuch suite ‘Bonnie Breccia’ pipe

The deepest expression of the Bonnie Breccia is in the Bonnie zone itself where it cuts Phase 1 and 2 diorite. The breccia extends narrowly (< 100 m wide) east for > 1 km up to the volcanic carapace at the paleosurface in Bonnie East. The Bonnie Breccia has highly variable componentry and contains clasts of silica-altered diorite porphyry, albite-altered diorite, pyrite-chalcopyrite clasts, quartz vein fragments, and sheeted quartz vein clasts (Fig. 6A and B). Groundmass material is predominantly magmatic diorite porphyry and in some areas (i.e. the Bonnie zone) a higher hydrothermal component exists where locally chalcopyrite-pyrite-chlorite comprises the matrix (Fig. 6A) and in other areas K-feldspar-chalcopyrite-pyrite heals the breccia. The easternmost outcrops of the breccia contain unconsolidated andesite porphyry clasts that are interpreted to indicate eruption. The Bonnie Breccia cuts Phase 1 and 2 diorite porphyry and is overprinted locally by higher temperature quartz-chalcopyrite-pyrite porphyry veins, milky white quartz-barite-chalcopyrite-sphalerite-galena veins and cut by Phase 3 diorite to the south, east and west. In many areas only large xenoliths of the breccia body remain surrounded by Phase 3. The breccia grades eastwards, towards the paleosurface, into volcaniclastic maar deposits that contain quartz vein clasts. The narrow width and expression at the paleosurface are consistent with the interpretation of an elongate diatreme breccia that grades from magmatic-hydrothermal in the root zones up into an eruptive sequence at the paleosurface.

EJrKdrt P3: Early Jurassic Kinskuch diorite porphyry Phase 3

The third phase of diorite plutonism outcrops inboard of Phase 1 and has an elongate east-west geometry that measures ~3 km easterly with a width of ~1 km. The intrusion is crowded, medium-grained, hornblende diorite porphyry (Fig. 4C) with somewhat finer-grained contact zones similar to the first phase of intrusion. The intrusion likely represents multiple plutonic events and is distinguished as a bracket in hydrothermal timing that is post-Stage 1 (propylitic, potassic and albitic alterations) and pre-Stage 2 (QSP alteration) described below. Phase 3 clearly cuts the copper-rich quartz stockwork and sheeted quartz vein zones of Stage 1 (Fig. 4D) and is overprinted by widespread quartz-sericite-pyrite (QSP) alteration with very high pyrite concentrations (5-15%).
EJrKmnz P4: Early Jurassic Kinskuch monzodiorite to monzonite porphyry

The fourth phase of plutonism includes a larger body of predominantly equigranular, phaneritic monzonite as well as numerous finer-grained, biotite-bearing, hornblende-feldspar porphyry plugs that are interpreted to be temporally related or possibly younger plugs of monzodiorite to monzonite composition.

The equigranular monzonite outcrops immediately south of Kinskuch Lake and is in contact with Phase 3 diorite on all sides. The intrusion is east-west flow foliated in the contact zones and is composed of approximately equal amounts of medium-grained plagioclase and K-feldspar, lesser quantities of hornblende and biotite, and < 5% primary quartz (Fig. 4E). The monzonite is distinguished from other phases of diorite intrusion by the coarser grain size of the groundmass, equigranular texture and the presence of primary quartz, pink K-feldspar and biotite not observed in the first three phases of diorite. The monzonite cuts Phase 3 diorite (Fig. 4F) and quartz-barite-chalcopyrite-sphalerite-galena veins and is cut by widespread rusty orange ankerite veins. Historic higher grade samples taken in the monzonite were found to be xenoliths of internally stockworked Phase 3 and xenoliths of mineralized quartz-barite veins.

Several plugs that measure < 500 m across of biotite-hornblende monzodiorite-monzonite outcrop in the south and east of Kinskuch lake. These intrusions are fine- to medium-grained biotite-hornblende-feldspar porphyritic in an aphanitic groundmass that may represent monzodiorite to monzonite compositions. The contact zones of these intrusions are mostly identified by abrupt loss of phyllic alteration and the appearance of primary biotite. The plugs cut all earlier phases (1-3) of intrusion and cut lower andesite volcanic strata. The presence of biotite phenocrysts in volcanic strata may indicate that some of these plugs were volcanic feeders. The cross-cutting relationship between the equigranular monzonite and these plugs is unclear, they may reflect satellite intrusions to the monzonite or potentially shallower, finer-grained penetrations of the larger body.

Edrt: Eocene diorite dikes

Eocene diorite dikes define swarms west of Kinskuch lake and outcrop in low abundance south of the lake. The dikes tend to be subvertical, have northerly to northeasterly trends and very sharp boundaries with wall rocks. The diorite dikes are composed of medium-grained plagioclase phenocrysts that typically form glomerocrysts of subhedral grains up to 50% of the rock and hornblende phenocrysts up to 5% with traces of primary magnetite and vesicles at margins. Rock texture ranges from nearly aphanitic, porphyritic and bi-modal porphyritic. Late diorite dikes cut Triassic and Jurassic strata and all intrusions on the property.

Hydrothermal evolution

Stage 1 introduces abundant copper-gold stockwork (Fig. 5A and B; Fig. 7A and B) with core potassic, albitic and propylitic alteration assemblages. This stage is correlated with very high quartz volumes and probably was emplaced related to the Phase 2, synmineral diorite. To the west of the altered zone, stockwork textures are highly irregular and disarticulated where they contain centerline sulphides with K-feldspar. To the east (i.e. Bonnie East), the stockwork bodies have slightly more planar vein geometries, are commonly banded in addition to containing centerline sulphide, and can contain covellite in addition to chalcopyrite. Representative samples from the sheeted quartz areas can commonly exceed copper grades of 1%. Stage 1 alteration extends several kilometers laterally as propylitic and albitic assemblages that flank the core assemblages. The youngest copper-gold event and potassic alteration event is marked by mineralization
and K-feldspar alteration in the roots of the Bonnie Breccia that cuts and is cut by high volume quartz stockwork.

Stage 2 comprises extremely high pyrite:chalcopyrite ratio mineralization with phyllic assemblages that include QSP (quartz-sericite-pyrite) and QSPC (quartz-sericite-pyrite-chlorite). These alteration assemblages are spatially correlated with low copper grades, typically < 0.1%, high percentages of pyrite (10-15%) and rarely contain phaneritic chalcopyrite. The phyllic assemblages clearly overprint high volume stockwork vein and Phase 2 plutonism. Phase 3 plutonic rocks intrude as an intermineral phase between Stage 1 and Stage 2 hydrothermal events. Most phyllic alteration assemblages are spatially correlated with the Phase 3 diorite.

Stage 3 hydrothermal activity includes silica flooding in structurally controlled quartz healed fractured zones, breccias and vein networks (Fig. 7C and D) that introduce higher grade Au-Cu-Pb-Zn. The silica alteration associated with this event is normally constrained to within 1-2 m of the veins. Vein and breccia zones can extend in length some 10-50 m and are typically 10 cm to 1 m in width. Breccia clasts are angular and can be lined with euhedral quartz growth from the clast margins and vein walls. Veins are composed of characteristic milky quartz that can be banded, chalcedonic, have open space growth and ranges anhedral to euhedral. These textures are consistent with an interpretation of epithermal, shallow levels of emplacements. In addition to quartz, the veins also contain barite, calcite, sphalerite, galena, chalcopyrite and pyrite. Veins are subvertical and strike northeast to northwest (Fig. 5C). The veins cut Phase 3 diorite and are cut by monzonite. The most significant mineralization associated with this event is in the southeastern Kinskuch lake area and in Bonnie East hosted in Phase 3 diorite.
Figure 7. Field photographs of hydrothermal veins. A: Moderate northeast-dipping sheeted veins from the East Bonnie zone contain centerline chalcopyrite-pyrite-magnetite in veins in deep green chlorite-quartz-magnetite altered hornblende diorite; 477881 E, 6166849 N (photo ID 3354). B: Sheeted quartz-chalcopyrite veins strike north-south and dip moderately west hosted in Phase 2 magnetite-chlorite-quartz-chalcopyrite altered diorite; 476110 E, 6167067 N (photo ID 3285). C: Milky quartz heals angular breccia with manganan carbonate at the margins and disseminated chalcopyrite-pyrite in matrix; 477006 E, 6166741 N (photo ID 2424). D: Breccia clasts are rimmed by euhedral, open-space growth milky quartz grains with interstitial pyrite; 477255 E, 6166890 N (photo ID 2418).

Faults

Two prominent faults are identified in the map area that cut altered rocks: 1) a northeasterly trending, east-vergent thrust fault with dip variation along trend that cuts and offsets the altered rocks near the Nickie zone and 2) a subvertical north-northeasterly trending dextral strike-slip fault that cuts the altered rocks in the Seabee zone.

Compressional features are distributed throughout the altered rocks as close-spaced (<50m), brittle oblique reverse faults with interpreted minor movement (<50 m). Faults are typically <20 cm wide brittle cataclasites with sigmoidal vein clasts (Fig. 8). Fault zones range from subvertical to moderate dips with northerly, northeasterly and northwesterly trends. The majority of fault zones indicate reverse dip-slip movement, typically with top-to-the-east and oblique strike-slip movement of both dextral and sinistral. It
is common to identify both dextral and sinistral strike-slip movement along one fault zone that may reflect fault reactivation.

Figure 8. Field photograph of reverse fault with 5cm wide cataclastic deformation zone containing reverse kinematics defined by rotated, sigmoidal vein fragments, photo view northwest; 477934 E, 6166940 N (photo ID 3344).

Folds

All strata and plutonic rocks on the property are folded by north-northwest and northeast trending folds except for the Eocene diorite dikes. Fold wavelengths are generally > 500 m and result in repeated stratigraphy, especially west of Kinskuch Lake. The folds are interpreted to be parasitic folds to the McGuire anticline to the west.

Discussion

Porphyry tilt

The porphyry system is interpreted to be tilted ~90 degrees to the east due to the following evidence:

1) Strata to the west, south and east of the intrusion indicate subvertical, eastwards-younging.
2) Vein textures grade from anastomosing, irregular in the west up into banded veins with sharp boundaries.
3) The presence of a volcanic carapace to the east that contains clasts of erupted quartz vein fragments.

4) The Bonnie Breccia componentry grades from internally stockworked clasts in the west with a magmatic intraclast material to cognate volcanic clasts in the east with tuffaceous material, near the paleosurface.

5) Stage 1 stockwork veins grade from K-feldspar-bearing higher temperature textures in the west, root zone, to banded and covelite-bearing, lower temperature textures in the east, upper extension.

Potassic alteration and the core zone

Previous workers distinguished only one intrusion in the Big Bulk area making the interpretation of the core zone of the porphyry impossible. This study separates four separate intrusions that overlap in time with hydrothermal activity and clarify the location of the core target area within the system. The Phase 4, post-mineral monzonite intrusion was previously interpreted as the potassic core to the system due to the presence of pink k-feldspar phenocrysts and K-feldspar-bearing veins that are devoid of copper. This study shows that no significant mineralization overprints the monzonite except where it contains xenoliths. Furthermore, the monzonite also truncates polymetallic veins of Stage 3 making it the poorest mineralized rock on the property. Drill holes that collared in the monzonite returned results consistent with this interpretation.

This study correlates surface high copper and gold in historic rock samples to lie within zones of sheeted quartz veins that strongly resemble the Mitchell-Snowfield mineralization style. The vertical and lateral extent of the original stockwork body ~1.5 km is of comparable scale to the vertical extent of Mitchell-Snowfield as well. The interpretation of the porphyry tilt allows drillable access to root zones of the system that is normally not possible.

5.0 2017 Geochemical Program

5.1 General

The 2017 geochemical program covered all three target areas within the Kinskuch Project: the Golden Mickey, Big Bulk, and the VMS claims. Minimal sampling was completed on the Golden Mickey but field crews did visit a historic adit that displayed mineralization with similarities to the Dolly Varden camp. Work on the Big Bulk area consisted of filling in gaps in historic sampling, sampling areas of recent exposure, and characterizing the geochemical signatures of the different phases of plutonism so that historic drill results could be reinterpreted given the new geological interpretations. The work completed on the VMS claims was less that planned due to inclimate weather for flying during the time scheduled to complete that portion of the program. Field crews were able to visit the Lahte Creek and sample
5.2 Sampling Procedures and Analytical Methodology

Rock sampling consisted of representative grab samples taken with rock hammer and placed in plastic ore bags. Stream sediment samples were collected from fine silt within prospective drainages in the VMS area of the claim package. They were taken with small spaces and placed into Hubco fabric bags. Assay analysis was conducted by SGS Mineral Services in Burnaby, BC. Rock and silt samples were analyzed by the GE_FAA313 and GE_IC14A methods. “FAA313” analyses a 30g sample split, analyzing the sample by fire assay (for gold only) with an AA (atomic absorption) finish. “IC14A” utilizes a 0.5g sample split by leaving it in Aqua Regia and analyzing the solution by ICP-MS.

5.3 Results

Refer to Appendix D, E, and F for sample descriptions, assay results, and maps of sampling results.

Big Bulk:

The 2017 program was designed to test a new working model proposed by Orevista geologists in conjunction with a BC Geological Survey (BCGS) and University of British Columbia (UBC) study on the Big Bulk porphyry Cu-Au system. Historic work has assumed that the Big Bulk porphyry system was an upright and a lower tonnage alkalic porphyry system. New interpretations indicate that the system is tilted with a surface expression of over 3.5 Km. Given the dimensions of the system as well as the dioritic host rocks, Orevista geologists believe the target is a much larger calc-alkaline porphyry system.

Given that the porphyry system is tilted on its side, deeper core zone alteration and mineralization normally only tested with deep drilling is present at surface. Sampling and mapping was focused on identifying and characterizing core zone alteration consisting of sheeted quartz veins with disseminated and vein hosted chalcopyrite within a chlorite altered diorite host. Previous sampling on the properly largely targeted what is now believed to be late mineral intrusive bodies and downgraded phyllic alteration zones. New sampling in these regions of interest has returned very promising results over 2.25km of trend with 42 rock samples returning an average of 0.57% Cu and 0.35 g/t Au. Notable samples (Table 1) include values as high as 2.84 g/t Au, 1.79% Cu (D00015631) and 2.02 g/t Au, 1.54% Cu (D00015624). These rock samples come from areas with limited or no historic sampling and some are from areas of recent glacial retreat.

<table>
<thead>
<tr>
<th>Sample No</th>
<th>Au (g/t)</th>
<th>Ag (g/t)</th>
<th>Cu (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D00015624</td>
<td>2.02</td>
<td>9.31</td>
<td>1.54</td>
</tr>
<tr>
<td>D00015631</td>
<td>2.84</td>
<td>6.74</td>
<td>1.79</td>
</tr>
<tr>
<td>D00015638</td>
<td>0.51</td>
<td>5.93</td>
<td>1.25</td>
</tr>
<tr>
<td>D00015650</td>
<td>0.56</td>
<td>2.36</td>
<td>1.08</td>
</tr>
<tr>
<td>D00015653</td>
<td>0.65</td>
<td>2.32</td>
<td>1.02</td>
</tr>
<tr>
<td>D00015658</td>
<td>0.42</td>
<td>12.3</td>
<td>1.42</td>
</tr>
</tbody>
</table>

Table 1: Notable Rock Samples from Sheeted Qtz Stockwork Zones
Sampling outside of these stockwork zones also returned significant values up to 12.5% Cu (D00015665) from poddy chalcopyrite mineralization within silicified diorite. Table 2 highlights several of these samples.

<table>
<thead>
<tr>
<th>Sample No</th>
<th>Geology</th>
<th>Au (g/t)</th>
<th>Ag (g/t)</th>
<th>Cu (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D00015665</td>
<td>Poddy Cp within sil diorite</td>
<td>0.09</td>
<td>30.1</td>
<td>12.5</td>
</tr>
<tr>
<td>D00015615</td>
<td>Qtz vein wall rock alteration</td>
<td>2.39</td>
<td>3.38</td>
<td>5.12</td>
</tr>
<tr>
<td>D00015616</td>
<td>High sulfidation epithermal vein</td>
<td>2.7</td>
<td>13.3</td>
<td>3.77</td>
</tr>
</tbody>
</table>

Table 2: Notable Rock Samples from Big Bulk

Golden Mickey

Field crews spent two days visiting the Golden Mickey target. One day was in conjunction with the BCGS/UBC program and another day was spent locating a historic adit to confirm the style of mineralization present. One sample (D00015534) returned 24.2% Cu, 7688 g/t Ag, 16.5 g/t Sb, and 1.45% Zn. The mineralization is characterized by a 30cm wide lens of massive tetrahedrite, chalcopyrite, and malachite within argillites that dips at a shallow angle into the cliff face.

VMS

Due to inclimate weather and poor conditions for helicopter access, limited work was performed on the VMS claims. An attempt was made to locate areas of sericite altered volcanics with the best sample returning (D00015656) 0.11 g/t Au, 5.91 g/t Ag, and 3.08% Zn. Sampling of historically sampled mineralization within near source angular float in sericite altered volcanics returned up to 57.9 g/t Ag, 5.08% Pb, and 4.47 % Zn (D00015655). Stream sediment sampling within the VMS target area failed to return any significantly anomalous samples except for one sample (D00015805) that returned 0.65% Cu and 0.65 g/t Au. This sample was taken from a 1m wide stream draining the southeast flank of Lavender Peak. Given the encouraging grade and the Cu:Au ratio of this sample, it potentially represents porphyry style Cu-Au mineralization such as that which is found at the Big Bulk target.
6.0 CONCLUSIONS

The 2017 exploration program was the first significant program completed by OK2 Minerals on the Kinskuch Project. The project was designed to evaluate all three target areas on the property; however, given the more advanced stage of the Big Bulk target, the bulk of work was focused on advancing it near to the point of diamond drill hole selection. The program was successful in advancing all three targets and was especially successful in proposing and adding credibility to a new tilted porphyry model for the Big Bulk target.

Big Bulk

Pre-field office studies and map compilation led Orevista geologists to believe that the historic model for the Big Bulk porphyry system was incorrect and it was not vertical but in fact sub-horizontal. Historic mapping indicated that Kinskuch Lake area was located within a paleobasin where subsequent deformation tilted basin stratigraphy near the porphyry system to subvertical beds that young to the east. This data was collaborated by a June field visit undertaken by the BC Geological Survey, the University of British Columbia (UBC), and Orevista geologist Gayle Febbo. Their mapping agreed with historic measurements and also indicated a tilt of approximately 90 degrees to the east in the area of the Big Bulk intrusive complex. What they also noted were several east verging thrust faults which in one place on the Dolly Varden Big Bulk claims (north of the Bonnie Zone) had emplaced core zone alteration on top of higher argillic alteration. Deformation on the eastern part of the target resulted in moderate tilting around the Bonnie Zone inferred from moderate dipping beds to the north. This model gave Orevista geologists a vector towards the center and western part of the Big Bulk claims for potentially hosting further core zone alteration and mineralization.

The 2017 field program initially focused on the western part of the Big Bulk claim package south of the historic Seebee zone and west of the historic Nickie zone. This area had seen limited rock sampling, possibly due to the presence of significant overburden but also likely due to limited brightly oxidized phyllic altered outcrops. It became apparent to Orevista geologists that the bulk of historic rock sampling had been done in gossanous outcrops and even on the outcrop scale, more silicified and less oxidized portions of outcrops were often unsampled. More often than not, these outcrops with little oxidation were due to much higher silicification, often in the form of sheeted copper-gold bearing quartz veins. This western area was terminated to the west by a dextral strike slip fault but remained open under till and then Kinskuch Lake to the east. Further prospecting via motor boat of the islands within Kinskuch Lake revealed more sheeted quartz vein mineralization across the lake and up to the Bonnie Zone. Several islands had not been historically sampled but one, the location of historic drill holes BB03-07 and BB03-08, showed that the majority of historic sampling had occurred in the downgraded phyllic altered parts of the island as opposed to the intact sheeted quartz veins.

Further prospecting, mapping, and sampling was completed to the east up the Bonnie and Bonnie East zones to the edge of glacial ice. Orevista geologists noted several xenoliths (up to ~30x30m) of sheeted quartz vein core mineralization that had minimal or no historic sampling. Given the sub-horizontal porphyry model the location of core zone mineralization represents the core of a porphyry system over ~3km. Many of these mineralized outcrops have been intruded by later P3 diorites which have effectively cannibalized mineralization and depressed copper and gold grades. Evidence for this also includes the presence of smaller sheeted quartz vein xenoliths distal to the mapped core zone. The area under Kinskuch Lake between the Bonnie Zone and the Nickie Zone represents an untested region with the potential to host a larger intact body of core zone mineralization. In total 42 rock samples were taken within core zone mineralized rocks and they averaged 0.57% Cu and 0.35 g/t Au. Given these impressive grades at surface...
exploration diamond drilling is warranted on the covered regions under Kinskuch Lake on this promising target.

Outside of the core zone mineralized areas geologists were also successful at characterizing the style of mineralization responsible for the often extremely high grade grab samples throughout the property. A late epithermal Au-Cu±Ag±Pb±Zn veining event took place after the porphyry emplacement. The majority of this mineralization is located on the southern flank of the porphyry system in addition to the upper parts (East) of the system where it overprints an upper breccia body (Bonnie and Bonnie east).

Historic drilling often displayed low grade intercepts interspersed with higher (ore) grade intercepts. This can now be explained by intercepts mainly consisting of later P3 diorites with either xenoliths of sheeted quartz vein mineralization and/or intercepts of epithermal veining. Given the new geological and alteration interpretations historic drill logs will need to be reanalysed based upon their elemental ratios. Those intercepts with Cu:Au ratios around 1-1.5:1 with little to no base metals should be classified as core zone mineralization or higher level breccia whereas those with higher base metal concentrations can be attributed to later epithermal veining. Although the epithermal mineralization on the property often carries spectacular grades it will be important to focus on the porphyry style mineralization for future drill campaigns since it will be more likely to add up to a significant resource.

Outside of historically worked areas, Orevista geologists made a discovery of a new zone of quartz stockwork within QSP altered diorites. This region at the southern end of the Big Bulk property was freshly exposed due to recent glacial retreat. This area only saw two days of work in the 2017 field program but it will require more work in future field seasons, which will need to be done in September when annual snow and ice melt is at its maximum. This area represents an exciting new target given the Midnight Blue porphyry showing to the south. In theory, this N-S orientation of porphyry style mineralization shows many similarities to the Kerr-Sulphretes-Mitchell camp where large Cu-Au porphyries are spaced several Km apart along a N-S axis within a paleobasin.

Golden Mickey

2017 field work on the Golden Mickey claim group was limited in its extent. Field crews completed one traverse with UBC geologists to familiarize themselves with the property geology. A second day was spent locating the historic Basin showing and adit. One sample was taken from this adit which although high grade did not necessitate further work during the field season. Future work on this high grade target should consist of more detailed prospecting in conjunction with a soil sample survey. At this time, the author does not recommend further work at the expense of work on the Big Bulk portion of the property.

VMS

A week of prospecting, sampling, and mapping work was planned for the VMS claims which required standby helicopter support due to the extremely rugged topography in the area. A helicopter was chartered and based out of the Big Bulk field camp for the duration of this week. Unfortunately, for the majority of the week low visibility conditions persisted in the area and only two days of work were completed on the project.

Sampling of historically located mineralization proved to have the potential for the project to host economic Pb-Zn-Ag mineralization and future work will be required to evaluate the potential of this project. One note of interest is that stream sediment sample (D00015805) returned 0.65% Cu and 0.65 g/t Au. This sample potentially indicates the presence of porphyry style mineralization extending east of the Big Bulk
system and onto the VMS claim package. Future work on the project should not be limited to identifying the potential for VMS style mineralization but also investigate the potential for bulk tonnage porphyry style mineralisation. The recently completed ZTEM survey did locate a magnetic anomaly in the vicinity of this anomalous sample so future work should investigate this region.

7.0 RECOMMENDATIONS

A proposed program of work for the Kinskuch property includes the following:

- Further soil sampling, mapping, and prospecting on the Golden Mickey claims.
- Detailed mapping, sampling, prospecting, and a large-scale soil sample survey over the VMS claim package.
- Further prospecting, sampling, and mapping of any new outcrop exposures on the Big Bulk claims with focus on the south end of the claims where stockwork discoveries were made in 2017.
- A 2000-3000m diamond drill program on the Big Bulk claims targeting core zone mineralization in covered areas on the western part of the claim package, underneath Kinskuch Lake between the Nickie and Bonnie Zones, and to the south of the Bonnie East Zone where glacial ice obscures outcrop.

Respectfully submitted,

Dustin Perry, BSc.
December 14th, 2017

8.0 REFERENCES

APPENDIX A: STATEMENT OF QUALIFICATIONS

For: Dustin Perry of 42012 Birken Rd, Squamish, BC.

I graduated from the University of British Columbia with a Bachelor of Sciences Degree in Geology (2013);

I have been practicing my profession as a geologist in mineral exploration and mining continuously since 2010 and seasonally since 2008

The observations, conclusions and recommendations contained in the report are based on supervision of the described program, field examinations, and the evaluation of results of the exploration program completed by the operator of the property.

Dustin Perry, BSc.

December 14th, 2017
KINSKUCH PROPERTY

Nov 22nd, 2017

NAD83 - Zone 9

D. Perry

1:10,000

Kinskuch17_SampLoc

1,000 Meters

Map

Legend

Kinskuch Claim Outlines
Lakes
Creeks
Contour (20m)
Rock Samples
Stream Sediment Samples

Inset 1

Golden Mickey

Kinskuch Lake

Big Bulk

See inset

Inset 1

British Columbia
Please provide the natural text representation of the document.